Preparation of Novel Side-chain *Pseudo*polyrotaxanes Consisting of Cucurbituril[6] and Polyamine Salts

Zhao Sheng HOU¹, Ye Bang TAN¹*, Kimoon KIM², Qi Feng ZHOU³

¹School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100
²National Creative Research Initiative Center for Smart Supramolecules, Pohang University of Science and Technology, San 31 Hyojadong, Pohang 790-784, Republic of Korea
³College of Chemistry and Molecular Engineering, Peking University, Beijing 100871

Abstract: *Pseudo*rotaxane monomer (VBCB) containing cucurbitutil[6] (CB[6]) and N¹-(4-vinylbenzyl)-1,4-diaminobutane dihydrochloride (VBDADC) is obtained by self-assembly of cucurbituril[6] with VBDADC in water and then polymerized using potassium persulfate (KPS) as initiator to give novel water-soluble side-chain cucurbituril[6]-based *pseudo*polyrotaxane (PVBCB). The chemical structures of PVBCB, VBCB and VBDADC are confirmed by ¹H NMR, ¹³C NMR spectra and elemental analysis. In VBCB, CB[6] is localized aliphatic group of the side chain and the molar ratio of CB[6] to VBDAC is 1:1.

Keywords: Pseudopolyrotaxanes, cucurbituril[6], preparation, self-assembly.

Cucurbituril (CB[6]) is a large-cage compound composed of six glycoluril units interconnected with twelve methylene bridges and has a hydrophobic cavity that is accessible through two identical carbonyl-fringed portals¹. CB[6] has been attracting much attention not only because of easy synthesis, highly symmetric structure and high chemical and thermal stability, but also the polar carbonyl groups at the portals and a hydrophobic cavity allow it to form stable host-guest complexes with small molecules such as protonated aminoalkanes, diaminoalkanes ($K>10^5$) through the formation of (pseudo)rotaxane. While (pseudo)polyrotaxanes containing cyclodextrin (CD) or crown ether threaded on side chains have been prepared by Ritter², Osakada³ and Takata⁴ et al., but the side-chain (pseudo)polyrotaxanes containing CB[6] have been scarcely reported other than Kim⁵. Here, we report the synthesis of a novel water-soluble side-chain pseudopolyrotaxanes in which CB[6] is threaded on protonated diaminobutane pendants attached to the main polymer chain. This approach is the first involved formation of a pseudorotaxane monomer by threading CB[6] on olefinic protonated diaminoalkanes, followed by polymerization of the *pseudo*rotaxane monomer to produce CB[6]-based side-chain pseudopolyrotaxanes.

^{*} E-mail: ybtan@sdu.edu.cn

Preparation of the compounds 5, 6, 7

Monomer 5 was prepared according to Scheme 1. 1 was reacted with NaN₃ in DMF at 80°C for 24 h to give 2 in 95% yield. One azido group of 2 was reduced by triphenylphosphine (PPh₃) in Et₂O/EtOAc/5% HCl at room temperature for 24 h to give 3in 94 % yield. 3 was reacted with 4-vinylbenzyl chloride in anhydrous CH₃CN at r.t. for 24 h. The product was purified by column chromatography using CH_2Cl_2 : MeOH = 1:2 as an eluate to give 4 in 70 % yield. The monomer 5 (N¹-4-vinylbenzyl-1,4diaminobutane dihydrochloride, VBDAC) was obtained in 73 % yield by reducing the secondary azido group of 4 with PPh₃ in THF at r.t. for 24 h, then concentrated HCl was

Scheme 1

a) NaN3, DMF, 80°C, 24 h; b) PPh3, Et2O/Et2Ac/5% HCl, rt, 24 h; c) 4-vinylbenzyl chloride, K2CO3, CH₃CN, rt, 24 h; d) PPh₃, THF, r.t., 24 h, then concentrated HCl

Scheme 2

e) CB[6], H₂O, rt, 24 h; f) KPS, H₂O, 60°C, 24 h

added slowly on ice cooling to precipitate as the HCl salt of 5. Pseudorotaxane monomer 6 (VBCB) and *pseudo*polyrotaxanes 7 were prepared according to Scheme 2. Construction of *pseudo*rotaxane monomer **6** was carried out by mixing **5** and CB[6] in slight excess in water, and stirring the mixture at r.t. for 10 h, then the product was purified by precipitation with H₂O-EtOH. The yield was high. Although CB[6] itself was sparingly soluble water, it slowly dissolved into the solution as the threading proceeds. The monomer 5 and *pseudo*rotaxane monomer 6 were characterized by 1 H NMR, ¹³C NMR and elemental analysis⁶. ¹H NMR spectrum of **6** not only indicated the proton signals for CB[6] at 4.74 and 5.74 ppm, but also signals of three protons for the $-CH=CH_2$ at 5.80, 6.23 and 6.30 ppm, respectively. After threading CB[6], the methylene proton signals (8:3.16 ppm; 11:3.05 ppm; 9-10:1.78 ppm) in the diaminobutane unit of **5** were shifted upfield (8': 2.45 ppm; 11': 2.33 ppm; 9'-10': 0.61 ppm) in **6** due to the shielding effect of CB[6]. While the other methylene (7: 4.25 ppm) of 5, which was located just outside of the CB[6], was shifted down-field (7': 4.37 ppm) (Figure 1a, b). The NMR data supported that the CB[6] threaded in 6 was localized on the diaminobutane unit and combine N^+ by non-covalent bonds. Peak integrals of ${}^{1}H$ NMR spectrum of 6 indicated CB[6] with 5 formed 1:1 complexion. The result was similar to that of other small molecular diaminoalkanes with $CB[6]^7$.

Radical polymerization of *pseudo*rotaxane monomer **6** was carried out by heating **6** at 65°C in water in the presence of KPS. The polymeric product **7** (PVBCB) was precipitated with ethanol and purified with EtOH : $H_2O = 9 : 1$ in 81% yield. The ¹H NMR spectrum of the polymer clearly indicated the formation of *pseudo*polyrotaxanes **7** which was consisted of not only *pseudo*rotaxane but also diaminobutane ions. The proton signals of vinyl group (5.41, 5.96, 6.84 ppm) disappeared (**Figure 1b, c**). Attempts to determine the molecular weight of *pseudo*polyrotaxanes **7** by GPC had been hampered by the fact that the **7** was only soluble in water and the suitable analytical equipment had not been available.

Acknowledgment

The Project was sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2002247) and the Youth Foundation of Shandong University.

References and Notes

- 1. W. L. Mock, Top. Curr. Chem., 1995, 175, 1.
- 2. J. Jeromin, H. Ritter, Macromolecules, 1999, 32, 5236.
- 3. I. Yamaguchi, K. Osakada, T. Yamamoto, Macromolecules, 2000, 33, 2315.
- 4. T. Takata, H. Kawasaki, N. Kihara, Y. Furusho, Macromolecules, 2001, 34, 5449.
- 5. Y. Tan, S. W. Choi, J. W. Lee, Y. H. Ko, K. Kim, Macromolecules, 2002, 35, 7161.
- 6. Data of analogues: Compound 2: ¹H NMR(600MHz, CDCl₃, δ ppm), 3.32 (t, 4H, J=5.8 Hz, CH₂N₃), 1.68 (m, 4H, J=12.4 Hz, CH₂CH₂); Compound 3: ¹H-NMR(600MHz, CDCl₃, δ ppm), 5.3 (s, 2H, NH₂), 3.31 (t, 2H, J=13.5 Hz, CH₂N₃), 2.74 (m, 2H, J=13.7 Hz, CH₂NH₂), 1.67 (m, 2H, J=13.5Hz, N₃CH₂CH₂), 1.56 (m, 2H, J=22.9 Hz, NH₂CH₂CH₂); ¹³C NMR (600MHz, CDCl₃, δ ppm), 51.6 (CH₂N₃), 42.0 (CH₂NH₂), 31.2 (CH₂CH₂NH₂), 26.6 (CH₂CH₂N₃); Compound 4: ¹H NMR (600MHz, CDCl₃, δ ppm), 7.26-7.37 (m, 4H, Ph), 6.68

Zhao Sheng HOU et al.

(dd, 1H, J=28.4 Hz, vinyl), 5.72 (d, 1H, J=17.6 Hz, vinyl), 5.18 (d, 1H, J=10.9 Hz, vinyl), 3.74 (d, 2H, J=3.4 Hz, CH₂-Ph), 3.23 (t, 2H, J=11.8 Hz, CH₂N₃), 2.61 (q, 2H, J=13.3 Hz, CH₂CH₂NH), 1.93 (s, br, 1H, NH), 1.62 (m, 4H, CH₂CH₂CH₂CH₂); ¹³C NMR (600MHz, CDCl₃, δ ppm), 140.4, 137.0, 128.6, 126.7 (Ph), 136.7 (=CH-), 113.8 (CH₂=), 54.1 (Ph-CH₂), 51.7 (CH₂CH₂NH), 49.1 (CH₂N₃), 27.6 (CH₂CH₂NH), 27.1 (CH₂CH₂N₃); Compound **5**: ¹H NMR (600MHz, D₂O, δ ppm), 7.61 (d, 2H, J=6.8 Hz, Ph), 7.46 (d, 2H, J=8.1 Hz, Ph), 6.89 (dd, 1H, J=28.6 Hz, vinyl), 5.96 (d, 1H, J=17.7 Hz, vinyl), 5.42 (d, 1H, J=17.9 Hz, vinyl), 4.25 (s, 2H, CH₂-Ph), 3.16 (t, 2H, J=13.5 Hz, CH₂CH₂NH₂⁺), 3.05 (t, 2H, J=13.2 Hz, CH₂NH₃⁺), 1.78 (s, br, 4H, CH₂CH₂CH₂CH₂); ¹³C NMR (600MHz, D₂O, δ ppm), 139.0, 130.6, 130.4, 127.2 (Ph), 136.2 (=CH-), 115.9 (CH₂=), 51.1 (CH₂CH₂N⁺H₂) 46.7 (PhCH₂), 39.2 (CH₂NH₃⁺), 24.3 (CH₂CH₂NH₃⁺), 23.1 (CH₂CH₂NH₂⁺); Anal. Calcd. for C₁₃H₂₂N₂Cl₂(%): C, 56.32; H, 7.94; N, 10.11. Found: C, 56.28; H, 8.01; N, 9.93; Compound **6**: ¹H NMR (600MHz, D₂O, δ ppm): 7.77 (d, 2H, J=8.1 Hz, Ph), 7.65 (d, 2H, J=8.2 Hz, Ph), 6.84 (dd, 1H, J=15.2 Hz, CH₂ of CB[6]), 5.66 (s, 12H, CH of CB[6]), 4.42 (s, 12H, CH₂ of CB[6]), 4.37 (s, 2H, CH₂Ph), 2.45 (s, br, 2H, CH₂CH₂NH₂⁺), 2.33 (s, br, 2H, CH₂NH₃⁺), 0.61 (s, br, 4H, CH₂CH₂CH₂CH₂); Anal. Calcd. for C₄9H₅₈N₂₆O₁₂Cl₂·H₂O (%): C, 45.56; H, 4.65; N, 28.20. Found: C, 45.94; H, 4.81; N, 28.43. 7 Y. M. Jeon, D. Whang, J. Kim, K. Kim, Chem. Lett., **1996**, 503.

Received 8 October, 2004